Data Assimilation

Data assimilation refers to the process of combining different models and related observations to ensure the inferences reflect the actual state of any instance and lead to better forecasts and predictions. The information obtained from different sources from time to time helps induce correction and efficiency in the model based on the model's combination and the observation. With each assimilation, the accuracy and analysis get better.

Data Assimilation

The process involves integrating new observations into existing datasets and using them to update the model's state. Then, by comparing the new observations with the model's output, adjustments are made to improve the model's representation of the real-world system. This iterative process of assimilation leads to better accuracy and analysis over time.

Table of contents